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Quimica, Bioquimica e Farmácia, Faculdade de Ciencias e Tecnologia, UniVersidade do AlgarVe, Campus de
Gambelas, 8005-139, Faro, Portugal, and Laboratory of Physical Chemistry and Colloid Science, Wageningen
UniVersity, Dreijenplein 6, 6703 HB Wageningen, The Netherlands

ReceiVed: October 1, 2007; ReVised Manuscript ReceiVed: April 3, 2008

A comprehensive theory is presented for the dynamics of metal speciation in monodisperse suspensions of
soft spherical particles characterized by a hard core and an ion-permeable shell layer where ligands L are
localized. The heterogeneity in the binding site distribution leads to complex formation/dissociation rate
constants (denoted as ka

/ and kd
/, respectively) that may substantially differ from their homogeneous solution

counterparts (ka and kd). The peculiarities of metal speciation dynamics in soft colloidal ligand dispersions
result from the coupling between diffusive transport of free-metal ions M within and around the soft surface
layer and the kinetics of ML complex formation/dissociation within the shell component of the particle. The
relationship between ka,d

/ and ka,d is derived from the numerical evaluation of the spatial, time-dependent
distributions of free and bound metal. For that purpose, the corresponding diffusion equations corrected by
the appropriate chemical source term are solved in spherical geometry using a Kuwabara-cell-type representation
where the intercellular distance is determined by the volume fraction of soft particles. The numerical study
is supported by analytical approaches valid in the short time domain. For dilute dispersions of soft ligand
particles, it is shown that the balance between free-metal diffusion within and outside of the shell and the
kinetic conversion of M into ML within the particular soft surface layer rapidly establishes a quasi-steady-
state regime. For sufficiently long time, chemical equilibrium between the free and bound metal is reached
within the reactive particle layer, which corresponds to the true steady-state regime for the system investigated.
The analysis reported covers the limiting cases of rigid particles where binding sites are located at the very
surface of the particle core (e.g., functionalized latex colloids) and polymeric particles that are devoid of a
hard core (e.g., polysaccharide macromolecules, gel particles). For both the transient and quasi-steady-state
regimes, the dependence of ka,d

/ on the thickness of the soft surface layer, the radius of the hard core of the
particle, and the kinetic rate constants ka,d for homogeneous ligand solutions is thoroughly discussed within
the context of dynamic features for colloidal complex systems.

1. Introduction

Nowadays, heavy metals are used in a large variety of
industrial products such as paints (Pb, Cd), gasoline (Pb), and
batteries (Pb, Cd, Ni, Zn), to quote only a few. As a result, the
concentration level of a number of heavy metals in the
environment has considerably increased, and much concern in
environmental protection and health care policy has now
arisen.1–4 In aqueous media, metal ions are typically present
over a broad range of complexes, resulting from their interaction
with organic and inorganic chelating agents, for example,
dissolved organic matter, dispersed colloidal particles, or
microorganisms.5 These binding entities largely differ in size,
chemical composition, and structural anisotropy, thus leading
to the formation of complexes with properties that vary
significantly in terms of lability and bioavailability.6 It is now

well recognized that a scrupulous understanding of metal
speciation is a mandatory prerequisite to quantitatively access
the relationships between the various physicochemical forms
of metals and their corresponding reactivity and mobility.5

Because natural aquatic systems are never at equilibrium,5 an
appropriate formalism to account for their metal speciation
should necessarily involve dynamic aspects. The latter stem from
the interplay between kinetic features which underlie the
interconversion of metal complex species in the bulk solution
and transport processes of the relevant species (complex and
metal) to/from the interface where species consumption (gener-
ally that of the free metal) takes place.

Until recently, the dynamic theories have entirely disregarded
the discrete nature of the ligand distribution as typically met in
colloidal dispersions. Instead, the complex formation/dissocia-
tion rate constants are commonly taken to be identical to those
for homogeneous distribution of the available binding sites
throughout the sample volume.7–11 The shortcomings of such a
simplistic approach have been recently underlined by Pinheiro
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et al.,12 who developed a formalism where steady-state complex
formation/dissociation rate constants for colloidal ligand disper-
sions were defined taking into account the spatial confinement
of the ligand sites to the very surface of the colloidal particles.
Their theory was successfully supported by experimental
measurements on lead and cadmium complexation by carboxyl-
modified colloidal particles. In particular, it was shown that the
formation/dissociation rate constants of complexes in colloidal
dispersions and homogeneous ligand systems may differ by
several orders of magnitude as a result of the differences in
kinetic/mass-transport conditions. The major emerging feature
is the evolution from a chemically kinetically controlled release
of the metal to a diffusion-controlled one, which is intrinsically
related to the dissimilarity in spatial ligand distributions.

Despite this breakthrough in our fundamental understanding
of metal speciation dynamics in colloidal ligand systems, the
treatment reported by Pinheiro et al.12 is limited to the restrictive
case of hard particles at the surface where ligands are located.
In practice however, metal ions are generally present in
dispersions of soft colloidal ligand particles13 where binding
sites are distributed according to three-dimensional spatial
profiles. Polysaccharide macromolecules14,15 and bacteria16 are
illustrative examples of such particles. To completely understand
metal speciation dynamics in soft colloidal ligand systems, it
is critical to quantitatively account for the distribution of free
and bound metal within the particular volume where the ligands
are distributed. This is essentially the purpose of the current
work. We propose a rigorous theory that allows the evaluation
of the time-dependent complex formation/dissociation rates in
monodisperse suspensions of soft colloidal ligand particles with
an arbitrary ratio between the core radius and surface layer
thickness. As such, the dynamic model reported here covers
the full spectrum of particle types, ranging from hard colloidal
ligand to core/shell and polymeric (porous) particles. Also, the
results shed some light on the nature of the steady-state regime
for the dynamics of metal speciation in such soft colloidal ligand
systems.

2. Theory

2.1. Geometrical Definitions and Formulation of the
Problem. In the following, we consider a swarm of identical
soft spherical particles of core radius a and shell thickness d
(Figure 1A) dispersed in an aqueous medium where metal ions
are present at an initial bulk concentration denoted as cM

/ . The
ligands (L) are confined within the soft part of the particle at a
constant, position-independent concentration denoted as cL

/. The
metal ion (M) can interact with the binding sites (L) to form
the complex (ML) according to the reaction

M+L {\}
ka

kd

ML (1)

where ka and kd are the intrinsic complex formation and
dissociation rate constants, respectively. The magnitude of the
rate constant ka is generally in agreement with the Eigen
mechanism,17 which comprises the formation of a precursor
outer-sphere complex, with an electrostatically determined
stability (Kos), followed by removal of water from the inner
coordination sphere (kw) as the usual rate-limiting step. The
Eigen mechanism is applicable, provided that the impact of the
electric field strength within the particle on ka and kd may be
neglected, as assumed within the framework of the current study.
The soft ligand particles are positioned according to a Kuwabara
cell model representation18 where each particle is considered
to be surrounded by a virtual cell such that the particle/solution

volume ratio in a unit cell equals the particle volume fraction
for the entire system (Figure 1A). In the following, we denote
the radius of the aforementioned unit cell as a + rc, where rc

encompasses the soft surface layer thickness of the colloidal
particle and that of the electrolyte solution distributed around
it within the cell (Figure 1A). We thus have

rc ) (a+ d)φ-1/3 - a (2)

or

rc ) (4πcp/3)-1/3 - a (3)

with φ as the particle volume fraction (hard core and soft
components included) and cp as the particle number concentra-
tion. Below, we shall assume that the position of the soft
particles is “frozen” in time, which comes to consider cases
where characteristic times of colloidal transport are infinitely
long as compared to those relevant for the dynamics of
molecular interaction between M and L. This simplification is
generally legitimate for experimental systems of practical
interest.12,19,20 Besides, within the scope of the current analysis,
we shall tackle the situation of unstirred aqueous media with a
large excess of indifferent background electrolyte over the M
species. This allows us to neglect the impact of the potential
distribution related to double layer formation at the soft interface
core/shell/aqueous solution on the free- and bound-metal
concentration profiles within the unit cell. This is similar to the
mathematical treatment encountered for microelectrodes.21 The
validity of this assumption is subject to the applicability of
the relation κrc . 1, where κ represents the reciprocal screening
Debye layer thickness. More quantitatively, neglect of the
potential distribution within and outside of the particle is justified
for electrostatic potential ψ that satisfies the inequality ψ(r )
a) , RT/F (where r is the radial position as indicated in Figure
1), with R as the gas constant, T as the temperature, and F as
the Faraday. Therefore, to define the most restrictive value of
ψ(r ) a) for validating the use of our model, we reason on the
basis of the Donnan potential within the shell layer in the case
of the uncharged core particle surface. Note that this is strictly
valid for κd . 1.13 Then, after straightforward rearrangements,

Figure 1. (A) Scheme (not to scale) of a dispersion of monodisperse
soft colloidal ligand particles distributed according to a Kuwabara-
cell-type representation. The unit cell of this representation is given
with the indication of the nomenclature used for the coordinate system
and for the geometrical parameters that define the particles. (B) Scheme
of the situation where the distribution of molecular ligands is
homogeneous throughout the sample volume. In panels A and B, the
reactive sites (ligand) are indicated in red for the sake of readability.
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we obtain the condition sinh-1(Ffix/(2Fc∞|z|)) , 1,13 where Ffix

is the volume charge density within the shell layer and c∞ is
the bulk concentration of mobile ions with valence z (for the
sake of simplicity, a z/z symmetrical background electrolyte is
considered). With |z| ) 1, this gives (Ffix/Fc∞) , 2. For (Ffix/F)
∼ 2-50 mM, as found for functionalized carboxymethyldextran
macromolecules14 or bacteria,13 we thus have c∞ . 1-25 mM.
Under the above conditions where conductive and convective
metal transport to/from the reactive sites within the soft particle
layer may be ignored, the conservation equations for the species
M and ML within a unit cell are given by

a < r < a+ d:

{ ∂cML(r, t)

∂t
)-{kdcML(r, t)- kacM(r, t)cL

/}

∂cM(r, t)

∂t
)DM

p ∇ 2cM(r, t)+ {kdcML(r, t)- kacM(r, t)cL
/}

(4,5)

a+ d < r < a+ rc:
∂cM(r, t)

∂t
)DM

sol∇ 2cM(r, t) (6)

where ci)M,ML(r,t) is the local concentration of species i at a
given time t and radial position r (the origin is taken at the
center of the particle core) and ∇ 2 ≡ ∂2/∂r2 + (2/r)∂/∂r is the
Laplacian operator in spherical geometry. The diffusion coef-
ficients DM

p and DM
sol are those of free-metal species within and

outside of the particle shell, respectively. For soft particles with
sufficiently high water content, it is reasonable to assume the
equality DM

p ) DM
sol ) DM.22–24 In other cases, the difference in

magnitude between DM
p and DM

sol originates from steric and
possibly electrostatic interactions between metal ions and ligand
sites/polymer network.23,24 The term in braces on the right-hand
side of eqs 4 and 5 represents the chemical source term due to
the association and dissociation of complex species. The tacit
assumption that underlies the validity of eqs 4–6 is the
consideration of excess binding sites as compared to free metal
in solution, which comes to write the local ligand concentration
cL(r,t) as cL(r,t) ≈ cL

/ . cM(r,t). In eqs 4 and 5, the transport of
the L ligand or, for that matter, the ML complex within the
shell layer is disregarded. This approximation is acceptable for
particles with stiff and fairly immobile polymer chains that
support the L reactive sites, which ensures inoperative motion
of L/ML groups within the particle at the time scale pertaining
to diffusive transport of M outside of the soft surface layer.
Such approximation must be abandoned when examining metal
speciation dynamics in soft ligand particles with highly flexible
(charged) chains submitted to external fields, as within the
framework of electrokinetic investigation or in dielectric
spectroscopy. Those situations will be the subject of forthcoming
analyses where metal speciation dynamics will be tackled in
relation to dynamics of polymer chains, as intrinsically con-
nected to their electrostatic and nanomechanical properties (e.g.,
elasticity). Note that L/ML movement is not necessarily random
walk since reactive sites L are interconnected via polymer
chains. For this reason, L/ML movement is not generally
diffusive, and it is emphasized that it should be apprehended in
connection with the dynamics of chains.

In colloidal ligand dispersions, the nonhomogeneous repar-
tition of the binding sites within a unit cell that encloses a single
particle (Figure 1A) may lead to reaction of M with L that is
critically diffusion-limited (see eqs 5 and 6) as compared to
the case where the ligand concentration is smeared out
throughout the unit cell (Figure 1B). The purpose of the current

paper is to determine the effective rate constants of complex
formation/dissociation, denoted as ka

/ and kd
/, respectively, that

are physically relevant at the scale of the colloidal ligand system
or, for that matter, at the scale of a unit cell as depicted in Figure
1A. The rate constants ka

/ and kd
/ should necessarily verify the

conservation equations that are now written for a colloidal
particle within a unit cell

a < r < a+ d:

{ ∂FML
V (t)

∂t
)-{kd

/FML
V (t)- ka

/FM
V (t)FL

V}

∂FM
V (t)

∂t
)DM

p ∇ 2FM
V (t)+ {kd

/FML
V (t)- ka

/FM
V (t)FL

V}

(7,8)

where the smeared-out concentrations Fi)M,L,ML
V over the whole

cell volume are defined by

i)M,L,ML: Fi
V(t)) 4π

Vc
∫a

a+rc r2ci(r, t)dr (9)

with Vc ) 4π(a + rc)3/3 ) cp
-1 as the volume of a unit cell and

cp as the particle number concentration introduced before. The
determination of the constants ka

/ and kd
/ as a function of their

molecular equivalents ka and kd will allow the identification of
the physical operators that distinguish metal speciation dynamics
in colloidal ligand suspensions from that in homogeneous
solutions of ligands. To do so, it is critical to evaluate the time-
dependent M and ML concentration profiles within a unit cell,
which is done in the next section.

2.2. Concentration Profiles of Free and Bound Metal.
Within the framework of the analysis, we do not a priori
consider the presence of any consuming interfaces in the
medium (i.e., electrode or microorganism). In such cases, the
soft ligand particle finds itself in a macroscopic diffusion layer
that is in contact with the metal-consuming interface. In section
3, the common aspects between this latter situation and that
treated here (i.e., case of metal speciation dynamics in bulk
dispersions of soft particles) will be discussed. The model
developed below is necessarily valid within a given size window
for the ligand particle for reasons that we now explicitly
mention. The upper size limit is defined in relation with the
fact that we exclude the impact of particle sedimentation on
diffusive M transport. Indeed, large colloids may settle down
with a time scale comparable to that of diffusion processes inside
and outside of the particle and thereby affect the dynamics of
kinetic/transport processes that govern metal speciation. Con-
sidering these elements, an upper size limit of about 1-10 µm
for the particle radius above which our results cannot be applied
seems realistic. Also, the condition that underlies the neglect
of movement of the particle on dynamics of the speciation
processes of interest imposes Dparticle , DM, with Dparticle as the
diffusion coefficient of the soft particle. If we consider the
typical diffusion coefficient for M to be on the order of 5 ×
10-10-10-9 m2 s-1 and simply use the Stokes-Einstein
equation for estimating the particle diffusion coefficient (with
the criterion Dparticle ) DM/10), we evaluate a lower size limit
for the particle on the order of 2-5 nm. In addition, determi-
nation of the lower size limit should also include the size range
where continuum transport modeling (adopted here) within the
particle is valid. This imposes l , d, where l is the typical
separation distance between two adjacent reactive sites. Taking
l ∼ 0.5 nm (as it is roughly the case for ionogenic sites along,
e.g., a functionalized polysaccharide chain), we also come to d
∼ 5 nm (if assuming l/d ∼ 10 as sufficient to warrant application
of continuum (fickian) transport theory).
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This lower size limit (5 nm particle radius) corresponds to
particles for which application of continuum models to derive
transport or electrostatic properties remains debatable. Rigorous
treatment for these types of particles would require advanced
molecular computations of electrostatics and ion transport
within/around the particles considered, which is well beyond
the scope of the paper. It should be underlined that these
molecular simulations are however not a panacea since they
rely on prescribed intermolecular potentials which are, more
often than not, difficult to justify at a quantum level.

The upper size limit of the model (1-10 µm particle radius)
is basically that of microorganisms like bacteria. Metal specia-
tion dynamics in living bacterial populations would require
taking into account the inner flux due to biouptake by (or
released from) the bacteria (e.g., via Michaelis-Menten-type
of expression). Extension of the current model for such situations
is straightforward, and it is stressed that the current model
provides the fundamental basis for addressing these cases.

Given the above elements, our model is restricted to colloidal
particles of radii in the range of 5 nm to 1-10 µm, for which
spherical diffusion of metal ions may be regarded as the
predominant mode of transport with a quickly achieved steady
state.19–21,25 In the following, we shall exclusively examine cases
where rc . a and rc . d or, equivalently, where the dispersion
of soft colloidal particles is sufficiently dilute so as to avoid
the possible occurrence of significant overlap between diffusion
layers that develop around two adjacent particles.26 We stress
however that the generality of the model proposed here allows
for the examination of situations of concentrated particle
suspensions. These will be explicitly analyzed in future com-
munication where the impact of double layer effects on metal
speciation dynamics in heterogeneous ligand distributions will
also be considered. Below, the relevant spatial and temporal
boundary conditions associated with eqs 4–6 are given. Then,
the numerical theory for computing the M and ML concentration
profiles within a unit cell is presented and further completed
by analytical developments valid in the short time domain.

Boundary Conditions. At t ) 0, the soft particles with ligands
L are supposed to come into contact with aqueous solution that
contains free-metal species M at initial bulk concentration cM

/ .
The free- and bound-metal concentrations within the particle
shell are set to zero, which gives

cML(ae re a+ d, t) 0)) 0 (10)

cM(ae re a+ d, t) 0)) 0 (11)

while outside of the shell where there is necessarily no complex
ML, we write

cM(a+ de re a+ rc, t) 0)) cM
/ (12)

The required four spatial boundary conditions related to eqs 5
and 6 and associated with the concentration profile cM within
and outside of the soft surface layer are given by

∂cM(r, t)/ ∂ r|r)a,t ) 0 (13)

∂cM(r, t)/ ∂ r|r)a+rc,t
) 0 (14)

cM(r) a+ d-, t)) cM(r) a+ d+, t) (15)

and

DM
p

∂ cM(r, t)/ ∂ r|r)a+d-,t )DM
sol

∂cM(r, t)/ ∂ r|r)a+d+,t (16)

Equation 13 translates the impermeable character of the core
particle surface for the free-metal species, and eq 14 stems from
symmetry consideration for the M concentration profile at the

position that corresponds to half of the separation distance
between centers of two adjacent particles. Equations 15 and 16
reflect the continuity equations for M concentration and M flux
at the edge of the soft surface layer, respectively. Note that the
general boundary expressed by eq 14 simplifies into cM(r ) a
+ rc,t) ) cM

/ for sufficiently dilute particle suspensions, that, is
for rc . a + d.

Numerical Analysis and Discretization of the GoWerning
Equations 4–6, and 10–16. For the sake of mathematical and
numerical convenience, we introduce the dimensionless variables

t̃) tDM
p /pd2 (17)

kan ) kapd2cL
//DM

p (18)

kdn ) kdpd2/DM
p (19)

xp ) (r- a)/d (20)

xs ) 1+ [r- (a+ d)]/(rc - d) (21)

and

c̃M,ML(r, t)) cM,ML(r, t)/cM
/ (22)

The parameter p in eq 17 is a nonzero scalar that allows
adjustment of the time range of investigation for the dynamic
processes of interest with t̃ ∈ [0,1]. The scaled quantities xp

and xs (eqs 20 and 21, respectively) satisfy the inequalities 0 e
xp e 1 and 1 e xs e 2. They are further written

i) 1, ..., M : xp,i ) (i- 1)∆x (23)

i) 1, ..., M : xs,i ) 1+ (i- 1)∆x (24)

with M as an integer and ∆x ) 1/(M - 1) as the spatial
discretization step taken to be identical, for the sake of
simplicity, in the r ranges that correspond to the shell and
solution components of the unit cell of radius a + rc. The
dimensionless time t̃ is discretized according to

k) 1, ..., N : t̃k ) (k- 1)∆t (25)

with N as an integer and ∆t ) 1/(N - 1) as the time
discretization step. To lighten the notations, we define c̃ML(xp,i,t̃k)
) c̃MLi

k, c̃M(xp,i,t̃k) ) c̃M1i
k, and c̃M(xs,i,t̃k) ) c̃M2i

k. To optimize
the convergence of the solution and reduce the computation time,
eqs 4–6 and boundaries 10–16 are discretized following the
“implicit backward Euler method”.27 Results are given in
Appendix 1, where we show that the searched c̃MLi

k, c̃M1i
k, and

c̃M2i
k are solutions of sets of linear equations written in matrix

form as follows

k) 1, ..., N- 1 : Ω ·Cb(k+1) )Qb(k) (26)

where Ω is a 3M × 3M sparse matrix explicitly reported in
Appendix 1, Cb(k+1) and Qb(k) being column vectors defined by

k) 1, ..., N- 1 : Cb(k+1) )

(c̃ML1
k+1, ..., c̃MLM

k+1, c̃M11
k+1, ..., c̃M1M

k+1, c̃M21
k+1, ..., c̃M2M

k+1)T

(27)

and

Qb(k) )

(c̃ML1
k, ..., c̃MLM

k , 0, c̃M12
k, ..., c̃M1M-1

k , 0, 0, c̃M22
k, ..., c̃M2M-1

k , 0)T

(28)

Let F be a numerical solver which enables the calculation of
the components of the searched Cb(k+1) from a known solution
Cb(k) and a given vector Qb(k), that is
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k) 1, ..., N- 1 : Cb(k+1) )F (Cb(k), Qb(k)) (29)

The column vector Cb(1) corresponds to the situation at t̃ ) 0.
From eq 27 and eqs 10–12, one easily shows that the only
nonzero elements of Cb(1) are given by Ci)2M+1, . . . , 3M

(1) ) 1,
where we choose the nomenclature Vi

(k) to denote the ith
component of any vector Vb(k) (Vb(k) ≡ Cb(k) or Vb(k) ≡ Qb(k)). Using
eqs 27 and 28, construction of the vector Qb(1) from Cb(1) and,
more generally, that of vector Qb(k) from Cb(k) is straightforward.
In particular, the nonzero elements of Qb(1) are given by
Ci)2M+2, . . . , 3M

(1) ) 1. Iterating k from 1 to N - 1, with Cb(1) as
the starting solution previously defined, the vector Cb(k) with the
ML and M concentration profiles at time t̃k within the unit cell
as components, can be evaluated. The numerical method
subsumed in F for solving the linear algebraic sparse system
(eq 26) with the right-hand side provided by the elements Qi

(k)

is based on a LU decomposition of matrix Ω according to
Crout’s algorithm with partial pivoting.27 The searched solution
at time t̃k is subsequently obtained by classical combination of
forward substitution and backsubstitution.27 The accuracy and
stability of the numerical solution was systematically verified
by controlling the independence of the results on the quantities
p, ∆x, and ∆t, with typical values for M and N around 1000
and 2000, respectively.

Analytical Approach. In this section, we derive analytical
expressions for the concentration profiles of M and ML within
a unit cell in the short domain. We shall see in section 3 that
these analytical results are useful for reproducing dynamic data
in transient and quasi-steady-state regimes as rigorously obtained
from the numerical analysis detailed above. Within the frame-
work of the analytical development below, it is convenient to
introduce the functions �ML(r̃,t̂) and �M(r̃,t̂) defined by

�ML(r̃,t̂)) rc̃ML(r̃,t̂) (30)

and

�M(r̃, t̂) ) rc̃M(r̃, t̂) (31)

where r̃ ) (r - a)/rc and t̂ ) DM
solt/rc

2. Note that, within the
framework of the analytical approach, the scaled variable t̂
differs from t̃ as considered for the numerical analysis. For very
dilute particle suspensions with rcf ∞ (as exclusively examined
in section 3), the particle shell thickness remains much thinner
than the developing diffusion layer in solution, and the evolution
of the concentrations of M and ML is largely determined by
the shell filling process. It is hypothesized that for small t̂, the
time derivatives of the dimensionless concentrations c̃M,ML(r̃,t̂)
may be approximated by

∂ c̃M,ML(r̃,t̂)/ ∂ t̂ ≈ [c̃M,ML(r̃,t̂)- c̃M,ML(r̃, t̂ ) 0)]/t̂ (32)

which will be shown to work satisfactorily for dilute systems
over a broad time range t by comparing analytical and numerical
results. For concentrated suspensions, the applicability of eq
32 is expected to pertain to a more restricted time range t,
thereby recalling that eq 32 is rigorous for t̂ f 0. We mention
here analogous treatments in refs 28–30 for obtaining ap-
proximate analytical solutions (see details below) to problems
that involve complicated partial differential equations. Using
eqs 10–12 and eqs 30–32, eqs 4–6 then reduce to

0 < r̃ < d̃ : { �ML
(r̃, t̂)(1+ k̃dt̂)- k̃at̂�M

(r̃, t̂)) 0

ε
∂

2�M
(r̃, t̂)

∂ r̃ 2
+ k̃d�ML

(r̃, t̂)-
1+ k̃at̂

t̂
�M

(r̃, t̂)) 0

(33,34)

d̃ < r̃ < 1:
∂

2�M(r̃,t̂)

∂ r̃ 2
- λ(t̂)2{�M(r̃,t̂)- rc(r̃+ ã)}) 0

(35)

where d̃ ) d/rc, ã ) a/rc, ε ) DM
p /DM

sol, λ(t̂)2 ) 1/t̂, k̃a ) karc
2cL
//

DM
sol and k̃d ) kdrc

2/DM
sol. Substitution of �ML(r̃,t̂) as obtained from

eq 33 into eq 34 leads to

0 < r̃ < d̃:
∂

2�M(r̃,t̂)

∂ r̃2
- �(t̂)2�M(r̃,t̂)) 0 (36)

with

�(t̂)2 ) [1+ (k̃a + k̃d)t̂]/[εt̂(1+ k̃dt̂)] (37)

Integration of eqs 35 and 36 is straightforward. The results read
as

d̃ < r̃ < 1: �M(r̃,t̂))C1(t̂)cosh[λ(t̂)r̃]+C2(t̂)sinh[λ(t̂)r̃]+

rc(r̃+ ã) (38)

0 < r̃ < d̃: �M(r̃,t̂))C3(t̂)cosh[�(t̂)r̃]+C4(t̂)sinh[�(t̂)r̃]

(39)

where C1,2,3,4(t̂) are time-dependent integration constants. Bound-
ary conditions given by eqs 13 and 14 are expressed in terms
of �M by the relationships

ã
∂�M

(r̃, t̂)

∂ r̃ |
r̃)0

- �M
(r̃) 0, t̂)) 0 (40)

and

(1+ ã)
∂�M(r̃,t̂)

∂ r̃ |
r̃)1

- �M(r̃) 1,t̂)) 0 (41)

respectively. The continuity eqs 15 and 16 at the edge of the
soft surface layer are rewritten

�M(r̃) d̃-,t̂)) �M(r̃) d̃+,t̂) (42)

and

ε(ã+ d̃)
∂�M(r̃,t̂)

∂ r̃ |
r̃)d̃-

) (ã+ d̃)
∂�M(r̃,t̂)

∂ r̃ |r̃)d̃+
-

(1- ε)�M(r̃) d̃-,t̂) (43)

respectively. The complete determination of the concentration
profiles cML and cM, or equivalently �ML and �M, requires the
evaluation of the integration constants C1,2,3,4(t̂) from eqs 38–43.
Full derivation of C1,2,3,4(t̂) is given in Appendix 2 (eqs
A31–A34 therein). The set of eqs 33, 38, 39, and A31–A34
rigorously defines the concentration profiles of M and ML over
the relevant space regions, that is, within the soft part of the
colloidal ligand particle and in the electrolyte solution around
it. In Appendix 2, simplified expressions for C1,2,3,4(t̂) are
provided in the limit of dilute particle suspensions, that is, for
cp , 1 or equivalently rc f ∞ (that limit is strictly examined
in section 3 within the framework of the current analysis). We
underline that the quantities �(t̂)r̃, λ(t̂)r̃, k̃dt̂, and k̃at̂ entering
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the expressions of local M and ML concentration profiles are
all independent of rc.

2.3. Complex Formation-Dissociation Rate Constants for
Discrete Soft Colloidal Ligand Systems. The integration of
both sides of eq 4 over the volume of the soft surface layer
leads to

∂FML
s (t)

∂t
)-kdFML

s (t)+ kaFM
s (t)cL

/ (44)

where we have introduced the smeared-out concentrations
Fi)M,ML

s over the shell layer volume of the particle as follows

i)M, ML : Fi
s(t)) 4π

Vs
∫a

a+d
r2ci(r, t)dr (45)

with Vs ) 4π{(a + d)3 - a3}/3 as the volume over which the
reactive binding sites L are distributed. Multiplication of both
sides of eq 44 by the ratio Vs/Vc leads to

∂FML
V (t)

∂t
)-kdFML

V (t)+ kaFM
s (t)FL

V (46)

where we recall that FL
s ) cL

/ and

i)L, ML : Fi
V/Fi

s )Vs/Vc (47)

The tacit assumption that leads to the derivation of eq 46 is
that the reaction rate constants ka,d that pertain to homogeneous
ligand systems (Figure 1B) also hold within the volume reaction
layer Vs. This simplification was introduced and justified in the
treatment proposed by Pinheiro et al.12 for the limiting case of
steady-state metal speciation dynamics in hard colloidal ligand
systems. It comes to ignore the impact of the interconnection
between the binding sites, via the polymer chain network within
the soft part of the colloidal particle, on the reactivity of the
individual ligand species. In other words, the intrinsic rate of
formation of a metal complex in an aqueous shell layer is
considered to be basically the same as that in bulk solution.
Following this, we may write that the equilibrium constants for
local and homogeneous ligand concentrations12 are identical,
that is

ka
/

kd
/
)

ka

kd
)K (48)

where K is the stability constant of the ML complex. In
Appendix 3, the validity of this expression for any time t is
demonstrated. For entirely porous particles (a f 0) in a
macroscopic diffusion layer at a consuming interface (e.g.,
electrode), Zhang et al.31 also pointed out that it is always
possible to formally write the pertaining rate constants, denoted
as ka

// and kd
// (which a priori differ from ka,d

/ due to the presence
of the macroscopic diffusion layer), as ka

// ) G(t)ka and kd
// )

G(t)kd, where G(t) is a function of time. The searched rate
constants ka,d

/ of interest here are necessarily verifying eq 7.
Eliminating the time derivative terms between eqs 7 and 46
and using eq 48, one obtains the general relationship between
ka
/ and ka

ka
/(t)

ka
)

FM
s (t)FL

V -FML
V (t)K-1

FM
V (t)FL

V -FML
V (t)K-1

(49)

where the time dependences of FM
s , FM

V , FML
V , and ka

/ have
been written explicitly. A similar expression may be derived
for the ratio kd

//kd. For a given time t, the determination of
the required FM

s , FM
V , and FML

V was carried out by numerical

integration (according to Simpson’s rule27) of the corre-
sponding cubic spline interpolated concentrations as evaluated
from the c̃MLi

k, c̃M1i
k, and c̃M2i

k obtained by a finite-elements
algorithm. In the short time domain, explicit expression for
ka
//ka may be derived using the analytical profiles cM,ML(r,t)

and C1,2,3,4(t) given in eqs 33, 38, 39, and A31–A34. Details
of the latter derivation are available in Appendix 4. After
rearrangements, the analytical expression for the ratio ka

//ka

for t f 0 as a function of the key kinetic, transport, and
geometric parameters reads as

ka
/(t̂)

ka
)

(Vscp)
-1FL

V -K-1
k̃at̂

1+ k̃dt̂

FL
V[1+

Vc -Vp

4π
+ ( rc

λ(t̂))
2

C1(t̂)h2(t̂)

( rc

�(t̂))
2

C4(t̂)h1(t̂) ] -K-1
k̃at̂

1+ k̃dt̂

(50)

where the general expressions of the time-dependent functions
C1,4(t̂) and h1,2(t̂) are given in Appendix 2 (eqs A31 and A34)
and Appendix 4 (eqs A59 and A60), respectively. Vp in eq 50
denotes the volume of the particle, core and shell included.
Straightforward simplifications of eq 50 for rc f ∞ may be
done taking into account (Vc - Vp) ∼ (cp)-1 and the limiting
expressions of C1,4(t̂) and h2(t̂) for rcf ∞ given in Appendices
2 and 4 (eqs A39, A42, and A61). Note that the quantities (rc/
λ(t̂))2 and (rc/�(t̂))2 in eq 50 are independent of rc.

3. Results and Discussion

3.1. Concentration Profiles of M and ML and Typical
Time Dependence for ka

//ka. To quantify the differences in
metal speciation dynamics between discrete colloidal ligand
suspensions and homogeneous ligand solutions, we first report
in Figure 2A,B the concentration profiles of free M and bound
ML metal species within and/or outside of the soft surface layer
with ligands. Results are given for different snapshots in time
as obtained from the numerical evaluation (eqs 26–29 and
Appendix 1) of the governing time-dependent reaction-diffusion
equations (eqs 4–6) under appropriate boundary conditions (eqs
10–16). Before commenting on these results, it is emphasized
that all calculations reported here are consistent, for the sake
of convenience and comparison, with the condition that the
smeared-out ligand concentration, FL

V, is kept constant over the
entire range of time, a, or d/a values examined. This implies
that the particle number concentration cp varies according to
the relationship cp ) FL

V/(VscL
/) that directly follows from eq 47

for i ) L. The value of FL
V considered in this paper is further in

agreement with the necessary conditions ã , 1 and d̃ , 1 (rc

being evaluated from eq 3) or equivalently φ , 1.
Starting from the situation at t ) 0 where M and ML species

are absent from the particle shell, ML concentration at a given
position within the shell continuously increases with time as a
result of gradual diffusion of free M from the solution (outside
of the particle) to the reactive shell layer and subsequent
complexation. In doing so, the ML concentration at fixed time
decreases from r ) a + d to r ) a, the highest ML concentration
being located at the position r ) a + d, that is, the surface that
the free metal has to cross to yield ML. The decrease in the
ML concentration from the outer edge of the soft surface layer
to the very interface core/shell is related to the corresponding
decrease in free-metal concentration as governed by the differ-
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ences in the chemical potential of free M species outside of
and within the shell (diffusive transport). For sufficiently long
time, ML and M concentration gradients within/outside of the
shell are significantly reduced, and local equilibrium within the
soft particle surface layer is reached. The latter situation simply
corresponds to local chemical equilibrium associated with the
reaction in eq 1, that is

cML(r, t)

cL
/cM(r, t)

fK (51)

For tf ∞, M and ML concentration profiles are flat, and eq 51
simply becomes cML/(cL

/cM) ) K with cM ) cM
/ . It is then verified

that the constant K corresponds to the ratio FML
V /(FL

VFM
V ) (see eq

7 in the steady sate and eq 48) as numerically computed for t
f ∞ (agreement with less than 0.1% error). That the steady-
state regime for the processes of interest here corresponds to
trivial chemical equilibrium within the whole shell is straight-

forwardly inferred from eqs 4–6 solved in the limit ∂cML,M(r,t)/
∂t ) 0. This simple treatment further confirms the results of
Figure 2 obtained for sufficiently long time t, in particular, that
the concentration profile of free M satisfies at every position r
g a the relation c̃M(r,t) f 1.

Figure 2C illustrates the time dependence of the ratio ka
//ka

(eq 49) under the conditions of Figure 2A,B. Close examination
of this dependence in relation with the M and ML concentration
profiles commented above reveals the existence of three distinct
regimes in the dynamics of the processes that govern metal
speciation in soft colloidal ligand suspensions. The first regime
corresponds to the short time limit and reflects the dynamically
developing M diffusion layer around the particle (see Figure
2B): the transient regime. Just for orientation, we give the simple
expression for the dynamic diffusion-controlled flux, denoted
as Jdiff, for free M toward/from a colloidal particle of radius a
+ d

Figure 2. (Panel A) Normalized concentration profiles of complex species ML within the soft shell layer of the particle where the reactive sites
L are located. (Panel B) Normalized concentration profiles of free-metal M within and outside of the soft shell layer of the particle. Results are
given for different times, as explicitly indicated, and were obtained from the numerical analysis detailed in the text. To avoid figure overcharge, the
situation at t ) 0 is not depicted (c̃M(r > a + d, t ) 0) ) 1, c̃M,ML(a < r < a + d, t ) 0) ) 0). For the sake of clarity, the position that corresponds
to the interface between the outer edge of the particle shell and the solution is marked with a dotted line (position r ) a + d or equivalently r̃ )
d̃ ) d/rc). (Panel C) Time dependence of the ratio ka

/(t)/ka as obtained from numerical analysis (eqs 26–29, and 49 and Appendix 1) from the
approximate eq 50 valid in the short time domain and from time-independent eq 55 that neglects the M and ML concentration polarization within
the shell. In the inset (Panel D), a zoom of the time variation of ka

/(t)/ka in the quasi-steady-state regime where the curve meaning is identical to that
in Panel C. Model parameters for Figure 2: a ) 20 nm, d ) 100 nm, DM ) 9.85 × 10-10 m2 s-1, cL

/ ) 10-2 mol m-3, FL
V ) 10-9 mol m-3, T )

298 K, K ) 5 × 104 mol-1 m3, kw ) 7 × 109 s-1, and Kos ) 3.66 × 10-3 mol-1 m3. The values of DM and kw pertain to Pb(II) metal ion (ionic
strength 0.01 M)12 while that of K is typical of metal complexation by carboxylate groups distributed at the surface of latex particles.12 The value
of FL

V considered in Figure 2 is in agreement with the condition ã , 1 and d̃ , 1 or equivalently φ , 1.
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Jdiff )DM∆cM{(πDMt)-1/2 + (a+ d)-1} (52)

where ∆cM is the driving concentration difference. In the
situation analyzed here, ∆cM evolves with time. The (πDMt)-1/2

term in eq 52 stands for linear diffusion, and the term (a +
d)-1 accounts for the sphericity of diffusion. The transient
regime physically corresponds to a time domain where Jdiff is a
function of time, that is, for t from zero to t for which (πDMt)1/2

. a + d. For soft particles of radius in the range of 5 nm to 5
µm where our formalism may be applied (see discussion in
section 2.2), this yields time windows of O(100 ns)-O(0.1s).
This estimation is done with a DM of O(10-9m2 s-1) and taking
the criterion (πDMt)1/2 ) 10(a + d) for evaluating the critical
time that marks the arbitrary boundary between transient and
steady- or quasi-steady-state regimes (see below). In the initial
stage of the transient regime, we have ka

/(t f 0)/ka f 0 in line
with eq 49 and the boundaries in eqs 10 and 11, which lead to
FML

V (t f 0) f 0 and FM
s (t f 0) f 0, respectively. When

increasing time, ka
/(t)/ka increases as a result of the accumulation

of M and ML within the shell layer. After some time, ka
/(t)/ka

decreases, which is reflected in the presence of a maximum.
This maximum is due to a slight decrease of FM

s (t) as intrinsically
related to the gradual building up of the M diffusion layer at
both sides of the very interface between the shell layer and
electrolyte solution (see Figure 2B,D). As shown later (Figure
3), this maximum is absent for cases where ka

/(t)/ka f 1, that
is, when the process is rate-limited essentially by the kinetics
of the reaction in eq 1.

In the light of Figure 2C (or Figure 2D, where ka
//ka is plotted

as a function of time according to linear axis representation), a
second regime may be identified. It follows the transitory
establishment of M diffusion profile, and it is characterized by
a nearly constant ka

//ka: the quasi-steady-state regime. In this
regime where important time variations are observed for the
local M and ML concentrations (Figure 2), it can be readily
shown that the numerically obtained M concentration profiles
for r g a + d may be approximated by

rg a+ d: cM(r, t) ≈ {cM(r) a+ d, t)- cM
/ }

a+ d
r

+ cM
/

(53)

which is the steady-state profile for diffusion-limited (M) species
outside of the shell. The flux Jdiff of M from or toward the
particle (eq 52) then maintains its steady-state nature, that is

Jdiff(t))DM

∂cM(r, t)

∂r |
r)a+d

≈ DM∆cM(t)/(a+ d) (54)

with ∆cM(t) ) cM
/ - cM(r ) a + d, t). Given eq 54, it can be

easily shown (details of the derivation are reported in Appendix
5) that ka

//ka may be then approximated by

ka
//ka ≈ (1+

kaFL
V

4π(a+ d)DMcp
)-1

(55)

which is independent of time. Comparison of ka
//ka as obtained

from numerical analysis and from eq 55 (Figure 2D) confirms
the acceptable validity of eqs 53 and 54 in the quasi-steady-
state regime for the dynamic processes analyzed here. The
observed discrepancies in the example of Figure 2 arise from
the approximations that underlie the derivation of eq 55,
mainly the neglect of concentration polarization of M and
ML within the shell layer (see details in Appendix 5). As
such, eq 55 may be viewed as a first-order expression for
ka
//ka in the quasi-steady-state regime.

For sufficiently long time t, the third regime, already invoked
above, is that where local M and ML concentrations are those
dictated by eq 51 (local chemical equilibrium). On the basis of
eqs 9 and 45, for zero gradients of M and ML concentration
distributions within and/or outside of the particle (situation at t
f ∞), we directly obtain

tf∞ : FM
V )FM

s ) cM
/ and

ka
/

ka
) 1 (56,57)

Equation 57 results from combining eq 56 with eq 49. In the

Figure 3. (Panel A) Ratio ka
*/ka in the time range that corresponds to the quasi-steady-state regime as a function of d/a under the condition a +

d ) constant: (a) a + d ) 10 nm, (b) 50 nm, (c) 100 nm, (d) 200 nm, (e) 400 nm, and (f) 1 µm. The open circles pertain to ka
*/ka as evaluated from

numerical analysis (eqs 26–29, and 49 and Appendix 1), the dashed lines refer to ka
*/ka obtained from eq 50, while the plain lines correspond to eq

55 (see text for further detail). Other model parameters as those in Figure 2. (Panel B) Time dependence of the ratio ka
/(t)/ka in the transient and

quasi-steady-state regimes under the conditions of Panel A with d/a ) 103. Plain lines: numerical analysis (eqs 26–29, and 49 and Appendix 1).
Dashed lines: eq 50 valid in the short time domain. All computations pertain to very dilute suspensions of colloidal ligand particles (rc . a + d)
of which the volume fraction φ is easily obtained via φ ) FL

V(cL
/)-1(1 - [1 + d/a]-3)-1 (which results from the combination of eqs 23 and 47

(i ) L)).
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regime where local chemical equilibrium prevails (eq 51),
following the reasoning above, we have for increasing time a
ratio ka

//ka, which increases and gradually reaches the value 1,
in agreement with Figure 2C and eq 57. In Figure 2C,D, the
time dependence of ka

//ka as obtained from the analytical
expression given by eq 50 (valid for short time) is reported
together with that evaluated from eq 55 (quasi-steady-state
approximation) and the “exact” numerical solution to the key
dynamic transport equations. The first comment is that the
general features of the dependence of ka

//ka on time are well
reproduced by eq 50 (initial increase of ka

//ka, presence of a
maximum, and setting of a quasi-steady-state regime). In the
transient and especially in the quasi-steady-state regime (t e
0.06s or t̂ e 0.09 under the condition of Figure 2), eq 50
provides a very good first-order estimate for the numerically
evaluated ka

//ka (Figure 2D). The slight differences between the
two stem from the approximation expressed by eq 32, which
constitutes the starting step in the analytical approach that leads
to eq 50. In the following, the discrepancy between the general
formation rate constant ka

/ and its counterpart for homogeneous
ligand solution, ka, are discussed in detail within the context of
dynamic features for colloidal complex systems.

3.2. Impact of Colloidal Ligand Particle Dimensions on
Metal Speciation Dynamic Features. In Figure 3, we report
the dependence of ka

//ka in the quasi-steady-state regime (cf.
section 3.1) on the shell-core ratio, d/a, for various values of
the particle radius a + d, in agreement with the size window
discussed in section 2.2 where our model is applicable. For the
sake of comparison, results derived from the “exact” numerical
analysis (eqs 26–29, and 49 and Appendix 1) and those from
the approximate eqs 50 and 55 are all collected. It is here
recalled that the results are presented for variation of the ratio
d/a and/or a + d at constant smeared-out ligand concentration,
FL

V (with φ , 1). This condition is satisfied via the change of
the particle number concentration cp according to cp ) FL

V/(VscL
/).

The strong variations of ka
//ka with d/a under the conditions of

Figure 3 (or Figure 4) are not governed by the corresponding
variations of cp (providing φ , 1) as imposed by the condition

of constant FL
V. This is straightforwardly verified by rewriting

eq 55 in the form ka
//ka ≈ (1 + kaVscL

//4π(a + d)DM)-1, where
the impact of the geometrical parameters of the particle are
explicitly indicated, recalling that Vs ) 4π{(a + d)3 - a3}/3. It
is anticipated that variation of cp will be critical in the
examination of the impact of electrostatics on metal speciation
dynamics by soft colloids (study currently in preparation).
Indeed, such variation will lead to changes of rc which, if
comparable to a few times the double layer thickness, will in
turn generate modulations of the interfacial electric field and
thus of the M transport characteristics and ultimately of ka

//ka.
From Figure 3, it is noted that the generalized formation rate
constant of the complex ML, ka

/, may differ from ka by several
orders of magnitude, particularly for soft colloidal ligand
particles characterized by large particle radius a + d and/or
significant surface layer thickness, that is, d/a . 1. Under such
conditions where ka

//ka , 1, metal speciation in colloidal ligand
systems is rate-limited by the diffusive transport of free-metal
ions to/from the soft surface layer that contains the binding sites.
In the other limiting situation where ka

//ka approaches unity, the
rate of the overall process is determined by the kinetics of the
reaction in eq 1. For ligand particles of given a + d, we note
that the ratio ka

//ka as evaluated from numerical analysis is
correctly reproduced by the approximate eqs 50 and 55, even
if some deviations are observed particularly for cases where
ka
//ka ∼ 0.5. In more detail, it is observed that the merging

between the rigorous ka
//ka and those obtained from eqs 50 and

55 at given a + d is excellent for low values of d/a (typically
d/a < 1), while some discrepancies show up for d/a > 1. These
are understood by arguing that (i) the time delay required to
reach quasi-steady-state regime increases upon increase of the
shell thickness (Figure 3B), thus rendering eq 50 (based on the
approximation in eq 32) less accurate, and (ii) the concentration
polarization of M and ML within the shell becomes more
significant for increasing thickness of the particle surface layer,
which makes eq 55 more approximate upon increase of a + d
and d/a, except for the particle geometry, such that ka

//ka reaches
the limiting values 0 or 1. Figure 3 illustrates the fundamental

Figure 4. (Panel A) Ratio ka
*/ka in the time range that corresponds to the quasi-steady-state regime as a function of d/a for a + d ) 400 nm for

lead(II), cadmium(II), manganese(II), and nickel(II) (indicated). The open circles refer to the ka
*/ka obtained from numerical analysis (eqs 26–29,

and 49 and Appendix 1), the dashed lines to ka
*/ka obtained from eq 50, while the plain lines correspond to eq 55 (see text for further detail). Other

model parameters are as those in Figure 2 except DPb ) 9.85 × 10-10 m2 s-1, DCd ) 7 × 10-10 m2 s-1, DMn ) DNi ) 1 × 10-9 m2 s-1; kw(Pb) )
7 × 109 s-1, kw(Cd) ) 3 × 108 s-1, kw(Mn) ) 3 × 107 s-1, and kw(Ni) ) 3 × 104 s-1, which are tabulated values extracted from ref 12 (0.01 M
ionic strength and zMzL ) -2 with zM and zL as the valence of M and L, respectively). The choice a ) 400 nm is in agreement with the particle
size window where the model is applicable. It is recalled that according to Eigen,17 ka ) Koskw. (Panel B) Time-dependence of the ratio ka

/(t)/ka in
the transient and quasi-steady-state regimes under the conditions of Panel A with d/a ) 103. Plain lines: numerical analysis (eqs 26–29, and 49 and
Appendix 1). Dashed lines: eq 50 valid in the short time domain.
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difference in dynamic features of metal speciation by hard and
entirely porous colloidal ligand particles, which corresponds to
the situations where d/a , 1 and d/a . 1, respectively.
Considering the situation where ka is sufficiently large for
appreciating the full range of dynamic features when varying
d/a, for cases where d/a . 1, metal speciation is significantly
rate-limited by the diffusive transport of the free-metal ions,
which corresponds to decreasing values of ka

/. In situations where
d/a , 1, the rate of interconversion of M into ML within the
volume reaction where binding sites are located controls
predominantly the dynamics of the processes: the nonequilibrium
regime governed by chemical kinetics. For intermediate values
of d/a, coupling between the kinetic determinants of the reaction
in eq 1 (i.e., the constants ka,d) and the diffusive transport of
free metal to/from the soft surface layer comes into play. Figure
3 underlines the incorrectness when assimilating a soft porous
ligand particle to a hard sphere. Note that such assimilation is
(unfortunately) still common in other fields of colloidal science
like electrokinetics, as extensively commented in ref 13. It is
emphasized that the expression in eq 50 provides an excellent
estimate of the ratio ka

//ka not only in the quasi-steady-state
regime but also in the transient where the M diffusion layer
gradually develops around the ligand particle.

We underline the strong analogy between the physical
operators that govern metal speciation dynamics in bulk
suspensions of soft colloidal ligand particles, as extensively
analyzed here, and that in suspensions of ligand particles that
find themselves in a macroscopic diffusion layer. To deepen
this analogy, let us first consider the simple scheme of a metal
ion M that associates with a soft colloidal ligand particle and
an interface which acts as a sink for free metal. This interface
may be an electrode or a consuming biointerface like a
microorganism. Complex systems are called static if they are
unable to restore equilibrium at the relevant time scale t of the
experiment, whereas they are considered dynamic if equilibrium
is fully maintained across the macroscopic diffusion layer, that
is, the rates for the volume reactions are fast on the relevant
time scale of the experiment, as mathematically expressed by
eq 58 below. As commented in ref 12, the two limits of static
and dynamic colloidal complexes in the presence of a consuming
interface should be written by replacing in the conventional
dynamic criteria for metal complex the commonly used rate
constants ka,d for homogeneous solution of ligands by their
generalized forms, denoted as ka,d

//

For dynamic complex (ML): kd
//t, ka

//FL
Vt > >1 (58)

For static complex (ML): kd
//t, ka

//FL
Vt < <1 (59)

The contribution of dynamic colloidal metal complexes to an
overall metal flux at a given electrode or microorganism
interface is governed by the magnitude of the macroscopic
diffusive flux as compared to that of the macroscopic kinetic
flux. We then speak of labile (diffusion control) or nonlabile
(kinetic control) metal complexes. In a previous analysis by
Pinheiro et al.,12 ka,d

// were derived as a function of ka,d for hard
colloidal ligand particles (d/a , 1) under “steady-state” condi-
tions using an analytical formalism based on a coarse-grained
representation of individual particles placed in the vicinity of a
consuming interface. Their result reads

ka,d
// /ka,d ≈ (1+

kaFL
V

4πaDMcp
)-1

(60)

In a more recent study by Zhang and co-workers,31 the
expressions of ka,d

// for entirely porous particles (devoid of hard

core, a ) 0) located in a macroscopic diffusion layer were
derived. Their “steady-state” treatment, done via the numerical
evaluation of Laplace transforms of the M and ML concentration
profiles within and outside of the porous particle, was found to
be in agreement, within a few percent error, with the similar
expression

ka,d
// /ka,d ≈ (1+

kaFL
V

4πdDMcp
)-1

(61)

Comparing eq 60 with eq 61 leads us to conclude that the
effective kinetic constants ka,d

// for the situation of hard or porous
colloidal complexes in a large-scale diffusion layer with a
thickness that well exceeds the size of the particle do not depend
on the free- and bound-metal concentration polarization within
the reactive layer of the particle. Within the framework of the
current analysis (absence of consuming interface), we have
shown that the expression in eq 55, which basically considers
M and ML concentrations as constant within the shell (Appendix
5), generally yields a satisfactory estimate for the numerically
evaluated ka,d

/ over the entire spectrum of dynamic situations
with values of ka

//ka ranging from 1 for d/a , 1 to 0 for d/a .
1 even if deviations are more pronounced for cases where d/a
. 1, as explained above. Equations 60 and 61 are nothing else
than the limits of eq 55 for d/a , 1 and d/a . 1, respectively.
In the analyses reported in refs 12 and 31, the local and coarse-
grained governing transport equations for M and ML within
and outside of the shell are equivalent to those considered here,
written with a Kuwabara cell representation under the condition
rc f ∞. Given this, the true “steady state” for these cases is
that explicitly indicated in this manuscript, that is, the trivial
chemical equilibrium, as directly inferred from solution of the
corresponding equations for ∂cML,M(r,t)/∂t ) 0. With these
elements in mind, the similarity in the quasi-steady-state regime
(which precedes the setting of chemical equilibrium) between
dynamics of metal speciation in suspensions of colloidal ligand
particles in the presence and absence of a macroscopic diffusion
layer is explained by the fact that in both situations, the time
variation of the ML concentration over the shell volume may
be related to the steady-state gradient of the M concentration
profile at the outer edge of the shell, that is

∂

∂t
{FML

V (t)+VscpFM
s (t)} ≈

4π(a+ d)DMcp{cM
/ - cM(r) a+ d, t)} (62)

which results from the combination of eq 54 with the volume
integration of the sum of eqs 4 and 5 using the relationship
(see details in Appendix 5)

∫a

a+d
r2∇ 2cML(r, t)dr) (a+ d)2

dcML

dr |
r)a+d

(63)

Note that eq 62, valid for any core-shell particle, is the three-
dimensional generalization of the expression given in ref 12
for the time variation of complex surface concentration in the
case of hard colloidal ligand particles. Using eq 62 in relation
with eq 46, neglecting the spatial details of the M concentration
distribution within the shell (i.e., FM

s (t) ≈ cM(r ) a + d, t)) and
writing FM

V (t) ≈ cM
/ for rc f ∞, one obtains the general

expression in eq 55 valid for any core-shell particle, from hard
to porous types (cf. details in Appendix 5). In view of the
discussion above, we state that under quasi-steady-state condi-
tions
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ka,d
// ) ka,d

/ (64)

and that eqs 58 and 59 also hold for the situation of metal
speciation dynamics in bulk suspensions of soft colloidal ligand
particles.

3.3. Impact of ka,d on Metal Speciation Dynamics. For the
sake of completeness, Figure 4A shows the dependence of ka

//
ka in the quasi-steady-state regime on the ratio d/a for a + d )
400 nm and various trace metals (Pb, Cd, Mn, and Ni)
characterized by similar diffusion coefficients DM (∼10-9 m2

s-1) and significantly different intrinsic complex formation rate
constants, ka. The first observation is that the larger the ka, the
lower the ka

//ka for a given d/a. This is so because deviation of
ka
/ from ka is most important when metal speciation is critically

limited by the diffusion process, or said differently, the kinetics
of interconversion of M into ML is fast (large ka, dynamic case).
The results depicted in Figure 4 highlight that a dynamic system
for homogeneously distributed molecular ligands (condition kdt,
kacL
/t . 1, which is the pendent of eq 58 for homogeneous ligand

solution) may be less dynamic when the L reactive sites are
confined within a colloidal shell because, in essence, ka

//ka < 1.
Finally, the time dependence of ka

/(t)/ka in the transient and quasi-
steady-state regime is given in Figure 4B under the condition
of Figure 4A with d/a ) 103. As in Figure 3B, the analytical
expression for ka

/(t)/ka given by eq 50 satisfactorily reproduces
the exact numerical results over the whole range of time that
pertains to the transient and quasi-steady-state regime. Upon
increase of ka, that is, from Ni(II) to Pb(II), the strong diffusion
limitation for the inner/outer flux of free M outside of the particle
shell leads to a dramatic decrease of ka

//ka, which reflects very
different properties of the colloidal complex in terms of
dynamics (eqs 58 and 59). Whereas the assimilation of ka,d

/ to
ka,d is appropriate for Ni(II), it is unacceptable for metal ions
with faster kinetic reactions (i.e., larger ka) with significantly
diffusion-limited speciation.

4. Conclusions

We propose a theory for the quantitative account of metal
speciation dynamics in bulk dispersions of core-shell colloidal
ligand particles ranging from hard (d/a , 1) to porous (d/a .
1) types. The proposed model is based on the numerical
evaluation of the time-dependent concentration distributions of
free and bound metal within (M and ML) and outside (only M)
of the soft ligand particles distributed according to a Kuwabara
cell representation. The M and ML concentration profiles are
derived by consistent numerical analysis of the coupled kinetic
and diffusive-transport equations of M and ML within and/or
outside of the volume reaction layer of the particle where
reactive sites are located. Following this, we derive a general
time-dependent expression for the kinetic complex formation/
dissociation rate constants (ka,d

/ ) in colloidal ligand dispersions
as a function of their pendents for homogeneous ligand
distributions (ka,d) and the integrals of M and ML concentrations
over the shell and unit cell volumes. The numerical computation
of these and thus of ka,d

/ is supported by (i) an analytical theory,
valid in the short time domain, which reproduces satisfactorily
the dynamic features of metal speciation by soft particles in
the transient and particularly quasi-steady-state regime and (ii)
an analytical expression for ka,d

/ under quasi-steady-state condi-
tions, which satisfactorily coincides with that obtained from
rigorous numerical estimation. Our analysis has far-reaching
implications for the dynamic features of soft colloidal metal
complexes and their lability with respect to interfacial processes.
It is basically demonstrated that the dynamics of metal speciation
in soft particle suspensions located or not within a macroscopic

diffusion layer (which stems from the presence of a consuming
interface like an electrode or microorganism) are similar in the
quasi-steady-state regime where a gradient of the M concentra-
tion at the outer edge of the shell particle maintains its steady-
state nature. As such, our analyses extend the approach
developed in refs 12 and 31 for hard and soft colloidal particles,
respectively, and quantitatively explains the impact of the M
and ML concentration polarization within the particle shell layer
on ka,d

/ . The role of the geometrical parameters that define the
soft particles and that of the intrinsic complex formation/
dissociation rate constants ka,d are discussed in detail. In
forthcoming analyses, we will extend our approach for inves-
tigating the dynamics of metal speciation in soft colloidal ligand
particles in relation with the dynamically developing interfacial
double layer within and outside of the shell particle. This will
provide the sound theoretical ground for capturing the spectral
signature of dynamic colloid-metal interaction processes as
measured by dielectric spectroscopy (AC electrokinetics). Such
analysis is essential to understand the impact of metal-soft
colloid binding on the electrodynamics of the soft particles of
interest. It is thereby expected to provide new insight, for
example, into the dynamics of coagulation processes mediated
by inter/intramolecular bridging between soft constituents of
colloids and metals. In conjunction with that, the impact of bulk
metal depletion on the ratio ka,d

/ /ka,d as a result of the evolving
overlap between diffusion layers of neighboring particles will
be critically examined and so will the impact of electric double
layer field (at the interface particle/solution) on metal speciation
dynamics. Overlap between adjacent diffusion layers (∼few
microns scale) and electric double layers (∼few nanometers
scale) is of importance for colloidal ligand particle dispersions
of a sufficiently high volume fraction and sufficiently low
salinity, respectively, as possibly encountered in practical
systems. Finally, it is emphasized that the analysis reported here
may be straightforwardly adapted to capture the basics of
dynamics of nutrients/pollutants uptake and/or release by
bacteria, which are paradigms of soft (bio)colloids.
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Appendix 1. Discretization of the Governing Equations
4–6 and Corresponding Boundaries from Equations
10–16

For a given time t̃k, discretization of eqs 4–6 following the
implicit backward Euler method yields

i) 1, ..., M : (1+ kdn∆t)c̃MLi
k+1 - kan∆tc̃M1i

k+1 ) c̃MLi
k

(A1)

i) 2, ..., M- 1 : RM1(i)c̃M1i
k+1 + �M1(i)c̃M1i+1

k+1 -

p(∆t/∆x2)c̃M1i-1
k+1 - kdn∆tc̃MLi

k+1 ) c̃M1i
k (A2)

and

i) 2, ..., M- 1 : RM2(i)c̃M2i
k+1 + �M2(i)c̃M2i+1

k+1 -

ω(∆t/∆x2)c̃M2i-1
k+1 ) c̃M2i

k (A3)

where ω ) DM
s pd2/[DM

p (rc - d)2] and RM1,2(i) and �M1,2(i) are
provided by

i) 2, ..., M- 1 : RM1(i))

1+ 2p∆t{1/∆x2 + 1 ⁄ [∆x(xp,i + a/d)]+ kan/(2p)} (A4)
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i) 2, ..., M- 1 : RM2(i))

1+ 2ω∆t{ 1/∆x2 + 1/[∆x(xs,i - 1+ a+ d
rc - d)]} (A5)

i) 2, ..., M- 1 : �M1(i))

-(p∆t/∆x2){1+ 2∆x/(xp,i + a/d)} (A6)

i) 2, ..., M- 1 : �M2(i))

-(ω∆t/∆x2){ 1+ 2∆x/(xs,i - 1+ a+ d
rc - d)} (A7)

The finite differences equations associated with the boundaries
of eqs 13–16 for a given time t̃k+1 are given by

c̃M12
k+1 - c̃M11

k+1 ) 0 (A8)

c̃M2M
k+1 - c̃M2M-1

k+1 ) 0 (A9)

c̃M1M
k+1 - c̃M21

k+1 ) 0 (A10)
and

σ(c̃M1M
k+1 - c̃M1M-1

k+1 )) c̃M22
k+1 - c̃M21

k+1 (A11)

respectively. The quantity σ in eq A11 is defined by σ ) DM
p (rc

- d)/(DM
sold). Eqations A1–A3 and A8–A11 may be formally

written in the matrix form provided by eqs 26–28 in the main
text with the 3M × 3M sparse matrix Ω of which the nonzero
elements are defined by

i) 1, ..., M : { Ω(i, i)) (1+ kdn∆t)
Ω(i, i+M))-kan∆t

(A12, A13)

Ω(M+ 1, M+ 1))-1 Ω(M+ 1, M+ 2)) 1

(A14, A15)

i)M+ 2, ..., 2M- 1 : { Ω(i, i-M))-kdn∆t

Ω(i, i- 1))-p(∆t/∆x2)
Ω(i, i))RM1(i-M)
Ω(i, i+ 1)) �M1(i-M)

(A16-A19)

{ Ω(2M, 2M- 1))-σ
Ω(2M, 2M)) σ
Ω(2M, 2M+ 1)) 1
Ω(2M, 2M+ 2))-1

(A20-A23)

Ω(2M+ 1, 2M)) 1 Ω(2M+ 1, 2M+ 1))-1

(A24, A25)

i) 2M+ 2, ..., 3M- 1 : { Ω(i, i- 1))-ω(∆t/∆x2)
Ω(i, i))RM2(i- 2M)
Ω(i, i+ 1)) �M2(i- 2M)

(A26-A28)

Ω(3M, 3M- 1))-1 Ω(3M, 3M)) 1

(A29, A30)

Note that the elements of the matrix Ω correspond to those of
the Jacobian associated with the set of linear equations given
by eqs A1–A3 and A8–A11. It is important to emphasize here
that the numerical computation of the M and ML concentration
profiles can be considerably faster by considering exclusively
the spatial range outside of the particle shell where nonzero
gradients for the M concentration are encountered. This comes
to reduce the range of xs values to the interval [1,d(θ - 1)/

(rc - d)], with θ > 1 defined as the scalar for which
∂cM(r,t)/∂r|r)a+θd,t ) 0. Adopting such a strategy imposes
replacing in eqs A3, A5, A7, and A26 the quantities ∆x and
∆x2 by d∆x(θ - 1)/(rc - d) and {d∆x(θ - 1)/(rc - d)}2,
respectively and replacing the right-hand sides of eqs A22 and
A23 by (rc - d)/[d(θ - 1)] and -(rc - d)/[d(θ - 1)],
respectively.

Appendix 2. Expressions for the Integration Constants
C1,2,3,4(t̂)

The integration constants C1,2,3,4(t̂), which enter the definition
of the concentration profiles for M and ML within the unit cell
of radius a+rc (eqs 30, 31, 33, 38, and 39), are determined by
the set of four boundary conditions expressed by eqs 40–43.
After proper combination of eqs 38, 39, and 40–43, one may
show that the C1,2,3,4(t̂) are solutions of a linear set of equations
written

C1(t̂)) {(a+ d)f3(t̂)- εrcf4(t̂)}{ f4(t̂)[λ(t̂)sinh(λ(t̂)d̃)-

1- ε

ã+ d̃
cosh(λ(t̂)d̃)-

f1(t̂)

f2(t̂)[λ(t̂)cosh(λ(t̂)d̃)-

1- ε

ã+ d̃
sinh(λ(t̂)d̃)]] - f3(t̂)[cosh(λ(t̂)d̃)-

f1(t̂)

f2(t̂)
sinh(λ(t̂)d̃)]} -1

(A31)

C2(t̂))-
f1(t̂)

f2(t̂)
C1(t̂) (A32)

C3(t̂)) ã�(t̂)C4(t̂) (A33)

with

C4(t̂))
1

f4(t̂){ C1(t̂)[cosh(λ(t̂)d̃)-
f1(t̂)

f2(t̂)
sinh(λ(t̂)d̃)] + a+ d}

(A34)

The time-dependent functions f1,2,3,4(t̂) are provided by

f1(t̂)) λ(t̂)(1+ ã )sinh(λ( t̂ ))- cosh(λ( t̂ )) (A35)

f2(t̂)) λ( t̂ )(1+ ã)cosh(λ( t̂ ))- sinh(λ(t̂) ) (A36)

f3(t̂)) ε�(t̂)[cosh(�(t̂)d̃)+ ã�( t̂ )sinh(�(t̂ )d̃)] (A37)

and

f4(t̂)) sinh(�(t̂)d̃ )+ ã�(t̂)cosh(�(t̂)d̃ ) (A38)

respectively. Given that, for any r̃ and t̂, �(t̂)r̃, λ(t̂)r̃, k̃dt̂, and k̃at̂
are all independent of rc, eqs A31–A34 simplify in the limit rc

f ∞ as follows

C1(t̂)) { ε
rc

�(t̂)
f4(t̂)- (a+ d)

f3(t̂)

�(t̂)} × { [cosh(λ(t̂)d̃)-

sinh(λ(t̂)d̃)][ f3(t̂)

�(t̂)
+ f4(t̃)(λ(t̂)

�(t̂)
+ 1- ε

�(t̂)[ã+ d̃])]}
-1

(A39)

C2(t̂))-C1(t̂) (A40)

C3(t̂)) ã�(t̂)C4(t̂) (A41)

with
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C4(t̂))
1

f4(t̂)
{C1(t̂)[cosh(λ(t̂)d̃)- sinh(λ(t̂)d̃)]+ a+ d}

(A42)

It may be straightforwardly verified that the functions f3(t̂)�(t̂)-1,
rc�(t̂)-1, and λ(t̂)�(t̂)-1 introduced in eq A39 are independent
of rc.

Appendix 3. Demonstration of the Relationship ka
//kd
/ )

ka/kd ) K

Let us assume that FM
s (t) may be written in the form

FM
s (t)) g1(t)FM

V (t)+ [1- g1(t)]g2(t) (A43)

where g1 and g2 are functions of time to be determined. Let us
further write

∂FML
V (t)/∂t) g3(t)[FM

V (t)- g2(t)] (A44)

with g3 as a third function of time to be derived in the following.
Then, elimination of g2(t) between eqs A43 and A44 and
substitution of the resulting expression for FM

s (t) into eq 46 leads
to

∂FML
V (t)

∂t
)-

kd

1+ kaFL
V

1- g1(t)

g3(t)

FML
V (t)+

ka

1+ kaFL
V

1- g1(t)

g3(t)

FM
V (t)FL

V (A45)

Identifying eq A45 with eq 7 immediately demonstrates that in
the equilibrium situation where ∂FML

V (t)/∂t ) 0, we have ka
//kd
/

) ka/kd ) K, which is eq 48 in the main text. The question
remains whether it is effectively possible to determine the
functions g1, g2, and g3. We show below that it is the case.
Prior to this, we mention in Appendix 4 that the time
dependences of FM

s , FM
V , and FML

V are explicitly derived in the
short time domain and that the time dependence of these
functions or their derivatives with respect to time (at any t) may
be rigorously obtained from the numerical analysis of the M
and ML concentration profiles as detailed in the text. Given
these elements, we now determine for the sake of illustration
g1, g2, and g3 in the short time domain, but demonstration for
any time t may be carried out along the same lines on the basis
of the numerically computed concentration profiles and thus of
the related functions FM

s , FM
V , and FML

V . Combination of eqs A55
and A57 (given in Appendix 4) provides

FML
V (t))Q(t)[FM

V (t)-R(t)] (A46)

with Q(t) ) k̃at̂/(1+k̃dt̂) and

R(t))
4 π rc

2cM
/

Vc
∫d̃

1
(r̃+ ã)�M(r̃, t̂)dr̃

(we recall that t̂ is a function of t given below eq 31 in the
main text). We obtain after derivation of eq A46 with respect
to time and rearrangements

∂FML
V (t)/∂t)Q(t)′[FM

V -R(t)+ Q(t)
Q(t)′ (FM

V ′ -R(t)′)]
(A47)

where the symbol F′ designates the derivative with respect to

time of function F. Identification of eq A44 with eq A47
provides

g3(t) ≡ Q(t)′ (A48)

and

g2(t) ≡ R(t)- Q(t)
Q(t)′ (FM

V (t)′ -R(t)′ ) (A49)

Using eq A43 gives

g1(t) ≡
FM

s (t)- g2(t)

FM
V (t)- g2(t)

(A50)

where FM
s (t) and FM

V (t) are explicitly given by eqs A52 and A58,
respectively. The FM

V (t)′ in eq A49 may be explicitly obtained
by differentiation of eq A58 with respect to time.

Appendix 4. Derivations of GM
s , GML

V , and GM
V in the Short

Time Domain

A.4.1. The volume concentration FM
s of free metal M over the

soft shell layer of a colloidal ligand particle is written

FM
s (t̂))

4πrc
2cM
/

Vs
∫0

d̃ (r̃+ ã)�M(r̃,t̂)dr̃ (A51)

which results from the combination of eqs 22, 31, and 45 for i
) M. Using eqs 39 and A41, one gets after some rearrangements

FM
s (t̂))

4πcM
/

Vs
( rc

�(t̂))
2

C4(t̂){�(t̂)d̃ cosh(�(t̂)d̃)-

[1- �(t̂)2ã(ã+ d̃)]sinh(�(t̂)d̃)} (A52)

where C4(t̂) is provided by eq A34.
A.4.2. On the basis of eq 47 for i ) ML, one easily verifies

that FML
V is related to FML

s according to

FML
V (t̂))VscpFML

s (t̂) (A53)

Using eq 33, one shows

FML
s (t̂))

k̃at̂

1+ k̃dt̂
FM

s (t̂) (A54)

so that eq A53 may be rewritten as

FML
V (t̂))Vscp

k̃at̂

1+ k̃dt̂
FM

s (t̂) (A55)

where FM
s (t̂) is given by eq A52.

A.4.3. The volume concentration FM
V of free metal M over

the unit cell of radius a + rc is given by

FM
V (t̂))

4πrc
2cM
/

Vc
∫0

1
(r̃+ ã)�M(r̃,t̂)dr̃ (A56)

Splitting the integral in eq A56 into a part that covers the shell
layer (0e r̃ e d̃) and another which pertains to the electrolytic
solution within a unit cell (d̃ e r̃ e 1), we find

FM
V (t̂))

Vs

Vc
FM

s (t̂)+
4πrc

2cM
/

Vc
∫d̃

1
(r̃+ ã)�M(r̃,t̂)dr̃ (A57)

Using eqs 38 and A32, eq A57 may be rewritten in the form
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FM
V (t̂)) 4πcM

/ cp( rc

�(t̂))
2

C4(t̂)h1(t̂)+

cM
/ { Vc -Vp

Vc
+ 4π( rc

λ(t̂))
2

cpC1(t̂)h2(t̂)} (A58)

with C1(t̂) is provided by eq A31 and

h1(t̂)) �(t̂)d̃ cosh(�(t̂)d̃)- [1- �(t̂)2ã(ã+ d̃)]sinh(�(t̂)d̃)

(A59)

h2(t̂)) [λ(t̂)(1+ ã)sinh(λ(t̂))- cosh(λ(t̂))] ×

{ cosh(λ(t̂)d̃)- λ(t̂)(ã+ d̃)sinh(λ(t̂)d̃)
λ(t̂)(1+ ã)sinh(λ(t̂))- cosh(λ(t̂))

+

λ(t̂)(ã+ d̃)cosh(λ(t̂)d̃)- sinh(λ(t̂)d̃)
λ(t̂)(1+ ã)cosh(λ(t̂))- sinh(λ(t̂)) } (A60)

For rcf ∞ and a (necessarily small) t̂, eqs A52, A55, and A58
simplify, taking the expressions given by eqs A39 and A42 for
C1(t̂) and C4(t̂) (valid for rc f ∞), respectively, and replacing
the function h2 in eq A58 by its limit for rc f ∞, that is

h2(t̂)) [cosh(λ(t̂)d̃)- sinh(λ(t̂)d̃)][1+ λ(t̂)(ã+ d̃)]

(A61)

Appendix 5. Derivation of Equation 55 in the Main Text

The neglect of the polarization concentration of free metal within
the particle shell leads to FM

s (t) ≈ cM(r ) a + d, t), and eq 46
then simplifies to

∂FML
V (t)

∂t
)-kdFML

V (t)+ kacM(r) a+ d, t)FL
V (A62)

Summation of eqs 4 and 5 and subsequent integration over the
shell volume provides

∂

∂t
{FML

s (t)+FM
s (t)})

4πDM

Vs
(a+ d)2

dcM

dr |
r)a+d

(A63)

where we have used the relation

∫a

a+d
r2∇ 2cM(r, t)dr) (a+ d)2

dcM

dr |
r)a+d

(A64)

Multiplying both sides of eq A63 by cpVs and recalling that
cpVs f 0 for rc f ∞, it becomes

∂FML
V (t)

∂t
≈ 4π(a+ d)2DMcp

dcM

dr |
r)a+d

(A65)

In the quasi-steady-state regime, the time variation of FML
V may

be taken from the gradient of the steady-state profile of free
metal just outside of the particle shell (eq 54), so that eq A65
becomes

∂FML
V (t)

∂t
≈ 4π(a+ d)DMcp{cM

/ - cM(r) a+ d, t)}

(A66)

Eliminating cM(r ) a + d, t) from eq A66 and substitution in
eq A62 gives

∂FML
V (t)

∂t
≈ (1+

kaFL
V

4π(a+ d)DMcp
)-1

(-kdFML
V (r, t)+ kacM

/ FL
V)

(A67)

Identification of eq A67 with eq 7 immediately gives eq 55

providing FM
V ≈ cM

/ , which is justified for very dilute colloidal
ligand suspensions (as verified a posteriori from the rigorous
numerical analysis of the local M concentration profiles within
and outside of the particle shell as well as from the analytical
developments detailed in section 2.2).

Glossary

List of Main Symbols and Abbreviations
a: Radius of the core of the soft colloidal

ligand particle (m)
ã: Normalized radius of the core of the soft

colloidal ligand particle (ã ) a/rc)
ci)M,ML: Local concentration of species i ()M, ML)

within a unit cell (mol m-3)
c̃i)M,ML: Dimensionless local concentration of species

i ()M, ML) within a unit cell
cL
/: Bulk concentration of reactive sites within

the soft part (shell layer) of the colloidal
ligand particle (mol m-3)

cM
/ : Initial bulk concentration of free-metal spe-

cies (mol m-3) in the electrolytic solution
cp: Particle number concentration in the sample

volume (m-3)
c∞: Bulk concentration of z/z background elec-

trolyte
C1,2,3,4(t̂): Integration constants (m) (Appendix 2)
Cb(k): Vector column given by eq 27
d: Thickness of the soft layer of the colloidal

ligand particle (m)
d̃: Normalized thickness of the soft surface

layer of the colloidal ligand particle (d̃
) d/rc)

DM
sol: Diffusion coefficient of free metal outside

of the particle shell (m2 s-1)
DM

p : Diffusion coefficient of free metal within the
particle shell (m2 s-1)

DM () DM
p ) DM

sol): Diffusion coefficient of free metal within/
outside of the particle shell when its water
content is sufficiently high (m2 s-1)

Dparticle: Diffusion coefficient of the particle (m2 s-1)
f1,2,3,4(t̂): Functions of time defined in Appendix 2
g1,2,3(t̂): Functions of time defined in Appendix 3
h1,2(t̂): Functions of time defined in Appendix 4
i, k: Integers
K: Stability constant for the (ML) complex

(mol-1 m3)
ka: Formation rate constant of the complex

(ML) (mol-1 m3 s-1), (ka ) Koskw)
kd: Dissociation rate constant of the complex

(ML) (s-1)
k̃a, k̃d, kan, kdn: Normalized formation and dissociation rate

constants of the complex (ML)
ka
/: Generalized formation rate constant of the

complex (ML) in the absence of a mac-
roscopic consuming interface (mol-1 m3

s-1)
kd
/: Generalized dissociation rate constant of the

complex (ML) in the absence of a mac-
roscopic consuming interface (s-1)

ka
//: Generalized formation rate constant of the

complex (ML) in the presence of a
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macroscopic consuming interface (mol-1

m3 s-1)
kd
//: Generalized dissociation rate constant of the

complex (ML) in the presence of a
macroscopic consuming interface (s-1)

Kos: Stability constant of outersphere complexes
(mol-1 m3)

kw: Rate constant for water substitution (s-1)
L: Ligand species
l: Typical separation distance between neigh-

boring reactive sites within the surface
layer of the soft colloidal ligand particle

M: Free-metal species
M: Integer
ML: Complex species
N: Integer
Qb(k): Vector column given by eq 28
r: Radial position (m)
rc: Characteristic dimension that enters the

definition of the radius of a unit cell (m)
r̃: Dimensionless radial position (defined be-

low eq 31)
t: Time (s)
t̃: Dimensionless time (used in numerical

analysis)
t̂: Dimensionless time (used in analytical de-

velopments)
Vc: Volume of a unit cell (m3)
Vs: Volume of the shell layer component of the

colloidal ligand particle (m3)
Vp: Volume of the colloidal ligand particle (m3)
xp, xs: Dimensionless space variables (eqs 20 and

21)

Greek Symbols

�(t̂): Dimensionless function of time
ε: Ratio DM

p /DM
sol

φ: Volume fraction of soft colloidal ligand particles in
the sample volume

�i)M,ML: Function of the local concentration ci)M,ML defined
by eqs 30 and 31 (m)

λ(t̂): Dimensionless function of time
Ω: 3M × 3M sparse matrix (Appendix 1)
ψ: Local electrostatic potential at the interface of the

soft particle/electrolyte solution
Fi

V: Volume concentration of species i over the spatial
region of a unit cell (mol m-3)

Fi
s: Volume concentration of species i over the shell layer

of the colloidal ligand particle (mol m-3)
Ffix: Volume charge density within the surface layer of

the soft colloidal ligand particle
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